Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727520

ABSTRACT

In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.

2.
J Hazard Mater ; 471: 134426, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688220

ABSTRACT

Nanoplastics (NPs) aggregation determines their bioavailability and risks in natural aquatic environments, which is driven by multiple environmental and polymer factors. The back propagation artificial neural network (BP-ANN) model in machine learning (R2 = 0.814) can fit the complex NPs aggregation, and the feature importance was in the order of surface charge of NPs > dissolved organic matter (DOM) > functional group of NPs > ionic strength and pH > concentration of NPs. Meta-analysis results specified low surface charge (0 ≤ |ζ| < 10 mV) of NPs, low concentration (< 1 mg/L) and low molecular weight (< 10 kg/mol) of DOM, NPs with amino groups, high ionic strength (IS > 700 mM) and acidic solution, and high concentration (≥ 20 mg/L) of NPs with smaller size (< 100 nm) contribute to NPs aggregation, which is consistent with the prediction in machine learning. Feature interaction synergistically (e.g., DOM and pH) or antagonistically (e.g., DOM and cation potential) changed NPs aggregation. Therefore, NPs were predicted to aggregate in the dry period and estuary of Poyang Lake. Research on aggregation of NPs with different particle size,shapes, and functional groups, heteroaggregation of NPs with coexisting particles and aging effects should be strengthened in the future. This study supports better assessments of the NPs fate and risks in environments.

3.
Nanomaterials (Basel) ; 14(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668175

ABSTRACT

Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.

4.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640799

ABSTRACT

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Subject(s)
Copper , Daphnia , Dibutyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Phthalic Acids/toxicity , Water Pollutants, Chemical/toxicity , Copper/toxicity , Dibutyl Phthalate/toxicity , Metal Nanoparticles/toxicity , Esters/toxicity , Microbiota/drug effects , Glutathione Transferase/metabolism , Metabolomics , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Metabolome/drug effects , Daphnia magna
6.
J Hazard Mater ; 470: 134192, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569346

ABSTRACT

Nanoplastics (NPs) inevitably interact with iron minerals (IMs) after being released into aquatic environments, changing their transport and fate. In this study, batch heteroaggregation kinetics of four types of NPs, i.e., polymethyl methacrylate (PMMA), polystyrene (PS-Bare), amino-polystyrene (PS-NH2), and carboxyl-polystyrene (PS-COOH), with two different IMs (hematite and magnetite) were conducted. We found that the heteroaggregation of NPs and IMs and the associated interfacial interaction mechanisms are both NPs-dependent and IMs-dependent. Specifically, the NPs had stronger heteroaggregation with hematite than magnetite; the heteroaggregation order of two IMs with NPs was PMMA > PS-NH2 > PS-Bare > PS-COOH. Moreover, hydrogen bond, complexation, hydrophobic, cation-π, and electrostatic interaction were involved in the interfacial reaction between NPs and hematite, and electrons were transferred from the NPs to the hematite, causing the reduction of Fe3+ into Fe2+. Furthermore, we first revealed that both pre-homoaggregation of NPs and IMs could affect their subsequent heteroaggregation, and the homoaggregates of IMs could be interrupted by PMMA or PS-COOH NPs introduction. Therefore, the emerging NPs pollution is likely to generate an ecological effect in terms of elemental cycles such as iron cycle. This work provides new insights into assessing the environmental transfer and ecological effects of NPs in aquatic environments.

7.
Ecotoxicol Environ Saf ; 276: 116289, 2024 May.
Article in English | MEDLINE | ID: mdl-38570269

ABSTRACT

The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.


Subject(s)
Cerium , Garlic , Garlic/genetics , Garlic/drug effects , Cerium/toxicity , Plant Roots/microbiology , Plant Roots/drug effects , Drug Resistance, Microbial/genetics , Plant Leaves , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics
9.
J Integr Plant Biol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597776

ABSTRACT

Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.

10.
J Hazard Mater ; 469: 134086, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38521034

ABSTRACT

In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.


Subject(s)
Arsenic , Oryza , Arsenic/toxicity , Arsenic/metabolism , Oryza/metabolism , Plant Growth Regulators/metabolism , Microplastics/metabolism , Seedlings , Glutathione/metabolism , Plant Roots/metabolism
11.
ACS Nano ; 18(10): 7379-7390, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411928

ABSTRACT

La2O3 nanoparticles (NPs) have shown great potential in agriculture, but cracking of plant sensitive tissue could occur during application, resulting in a poor appearance, facilitating entry for insects and fungi, and increasing economic losses. Herein, exocarp cracking mechanisms of tomato (Solanum lycopersicum L.) fruit in response to La2O3 NPs were investigated. Tomato plants were exposed to La2O3 NPs (0-40 mg/L, 90 days) by a split-root system under greenhouse condition. La2O3 NPs with high concentrations (25 and 40 mg/L) increased the obvious cracking of the fruit exocarp by 20.0 and 22.7%, respectively. After exposure to 25 mg/L La2O3 NPs, decreased thickness of the cuticle and cell wall and lower wax crystallization patterns of tomato fruit exocarp were observed. Biomechanical properties (e.g., firmness and stiffness) of fruit exocarp were decreased by 34.7 and 25.9%, respectively. RNA-sequencing revealed that the thinner cuticle was caused by the downregulation of cuticle biosynthesis related genes; pectin remodeling, including the reduction in homogalacturonan (e.g., LOC101264880) and rhamnose (e.g., LOC101248505), was responsible for the thinner cell wall. Additionally, genes related to water and abscisic acid homeostasis were significantly upregulated, causing the increases of water and soluble solid content of fruit and elevated fruit inner pressure. Therefore, the thinner fruit cuticle and cell wall combined with the higher inner pressure caused fruit cracking. This study improves our understanding of nanomaterials on important agricultural crops, including the structural reconstruction of fruit exocarp contributing to NPs-induced cracking at the molecular level.


Subject(s)
Lanthanum , Nanoparticles , Oxides , Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/genetics , Water
12.
J Integr Plant Biol ; 66(4): 642-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38390811

ABSTRACT

Knockout of the soybean (Glycine max) betaine aldehyde dehydrogenase genes GmBADH1 and GmBADH2 using CRISPR/Cas12i3 enhances the aroma of soybeans. Soy milk made from the gmbadh1/2 double mutant seeds exhibits a much stronger aroma, which consumers prefer; this mutant has potential for enhancing quality in soy-based products.


Subject(s)
Glycine max , Soy Milk , Glycine max/genetics , Odorants/analysis , Plant Breeding
13.
Hortic Res ; 11(1): uhad250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269296

ABSTRACT

Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.

14.
J Integr Plant Biol ; 66(1): 17-19, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38078380

ABSTRACT

A sample delivery method, modified from cut-dip-budding, uses explants with robust shoot regeneration ability, enabling transformation and gene editing in medicinal plants, bypassing tissue culture and hairy root formation. This method has potential for applications across a wide range of plant species.


Subject(s)
Gene Editing , Plants, Medicinal , Gene Editing/methods , Plants, Medicinal/genetics , Transformation, Genetic , Plants, Genetically Modified/genetics
15.
Food Chem ; 440: 138224, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38134824

ABSTRACT

Application of nanomaterials (NMs) in agriculture poses an ingestion risk to humans and may affect the digestive process. Different fates of NMs with differential charges in the gastrointestinal tract should be considered. In this study, the interaction between three carbon dots (CDs) carried with different functional groups (-NH2, -OH, and -COOH) and pepsin was analyzed through an in vitro digestion model. The results showed that CDs significantly reduced pepsin activity. Among them, CDs-NH2 had the greatest effect, following by CDs-OH, and CDs-COOH. Besides, molecular docking demonstrated the specific binding site of CDs to pepsin, while the most stable binding energy (-8.10 kcal/mol) was formed between CDs-NH2 and pepsin. Further, CDs formed a nanomaterial-protein crown structure with pepsin. The present study enriches the functional group properties of CDs in the digestion and provides new ideas for the potential human health of NMs.


Subject(s)
Pepsin A , Quantum Dots , Humans , Pepsin A/chemistry , Carbon/chemistry , Molecular Docking Simulation , Binding Sites , Digestion , Quantum Dots/chemistry
16.
Am J Transl Res ; 15(9): 5873-5881, 2023.
Article in English | MEDLINE | ID: mdl-37854206

ABSTRACT

OBJECTIVE: To observe the predictive value of speckle tracking technique (STI) for the degree of coronary artery stenosis in patients with coronary heart disease (CHD). METHODS: The clinical data of 120 patients with coronary artery stenosis admitted to Affiliated Hospital of Chengde Medical University from Feb. 2022 to Sep. 2022 was analyzed retrospectively. The other 63 patients who sought for medical help because of chest pain underwent Coronary Arteriography (CAG) examination during the same period but with Gensini score > 0 were selected as the control group. Coronary artery stenosis was divided into three subgroups according to the coronary Gensini score: mild, moderate, and severe stenosis. Routine ultrasound and STI techniques were performed in all patients. In addition, left ventricular global radial peak systolic strain (GRS), left ventricular global longitudinal peak systolic strain (GLS), left ventricular global peak systolic strain (GAS) and left ventricular global circumferential peak systolic strain (GCS) were measured and compared between the two groups and among the three subgroups. RESULTS: There were no marked differences identified in conventional ultrasound parameters between the coronary artery stenosis group and control group, but the absolute values of GLS, GRS, GCS, and GAS were lower in the former group compared to control group; and the severe group had the lowest levels of above indexes, followed by moderate group, then mild group and control group (all P < 0.05). The results showed that the area under the curve (AUC) for GLS, GRS, GCS, and GAS in diagnosing coronary artery stenosis were 0.973, 0.933, 0.947, and 0.901, respectively. The AUCs of GLS, GRS, GCS, and GAS for the diagnosis of moderate/severe coronary artery stenosis were 0.968, 0.908, 0.901, and 0.942, respectively, with GAS and GLS assessed with the largest AUC values and higher sensitivity and specificity than other parameters. CONCLUSION: The global longitudinal strain of left ventricle obtained by STI technique was more sensitive to coronary artery stenosis than that by ultrasound technique, and it had a higher predictive value for coronary artery stenosis.

17.
Chemosphere ; 344: 140320, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775052

ABSTRACT

Agricultural heavy metal contamination can cause significant crop damage, highlighting the urgent need to mitigate its negative effects. Under Cd2+ stress, selenium nanomaterials (Se NMs, 2 mg kg-1) can significantly improve Brassica chinensis L. root growth and vigor, enhance photosynthesis (31.4%), and increase biomass. Se NMs treatment also reduces Brassica chinensis L root and shoot Cd concentration by 67.2 and 72.9%, respectively. This reduction is mainly due to the gene expression of Cd2+ absorption (BcITR1 and BcHMA2) which was down-regulated 51.9 and 67.0% by Se NMs, respectively. Meanwhile, Se NMs can increase the abundance of Cd-resistant microorganisms (Gemmatimonas, RB41, Haliangium, Gaiella, and Steroidobacter) in rhizosphere soil while also reducing Cd migration from soil to plants. Additionally, Se NMs also contribute to reducing ROS accumulation by improving the oxidation-reduction process between GSH and GSSG through enhancing γ-ECS (15.6%), GPx (50.2%) and GR (97.3%) activity. Remarkably, crop Se content can reach 50.8 µg/100 g, which fully meets the standards of Se-rich vegetables. These findings demonstrate the potential of Se NMs in relieving heavy metal stress, while simultaneously increasing crop Se content, making it a promising technology for sustainable agricultural production.


Subject(s)
Brassica , Selenium , Soil Pollutants , Selenium/pharmacology , Selenium/metabolism , Antioxidants/metabolism , Cadmium/toxicity , Cadmium/metabolism , Oxidative Stress , Glutathione/metabolism , Soil , Soil Pollutants/toxicity
18.
Sci Total Environ ; 901: 166500, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37619720

ABSTRACT

To sustainably feed the growing global population, it is essential to increase crop yields on limited land while reducing the use of fertilizers and agrochemicals. The rhizosphere regulation shows significant potential to address this challenge. Here, foliar applied doping of nitrogen in carbon dots (N-CDs) entered maize leaves, and were transported to the stems and roots. The internalized N-CDs significantly increased the biomass (26.4-93.8%) and photosynthesis (17.0-20.3 %) of maize seedling during the three-week application of N-CDs, providing the substrate for tricarboxylic acid cycle (TCA) in shoots and roots. Correspondingly, more organic acids involved in TCA cycle, such as citric acid (14.0-fold), succinic acid (4.4-fold) and malic acid (3.4-fold), were synthesized and then secreted into rhizosphere after exposed to N-CDs for one day. As the exposure time increased, greater secretion of above organic acids by the roots was induced. However, no significant change was observed in the relative abundance of rhizobacteria after foliar application with N-CDs for one day. After one week, the relative abundances of Azotobacter, Bacillus, Lysobacter, Mucilaginibacter, and Sphingomonas increased by 0.8-3.8 folds. The relative abundance of more beneficial rhizobacteria (Sphingomonas, Lysobacter, Rhizobium, Azotobacter, Pseudomonas, Mucilaginibacter and Bacillus) enriched by 0.3-6.0 folds after two weeks, and Sphingomonas, Flavisolibacter and Bacillus improved by 0.6-3.2 folds after three weeks. These dynamic changes suggested that N-CDs initiate the synthesis and secretion of organic acids and then recruited beneficial rhizobacteria. The hierarchical partitioning analysis further indicated that N-CDs-induced secretion of organic acids from the roots was the main drivers of rhizobacteria community dynamics. The differential microbes altered by N-CDs were mainly involved in nitrogen (N) and phosphorus (P) cycles, which are beneficial for N and P uptake, and maize growth. These results provide insights into understanding the rhizosphere regulation of nanomaterials to improve plant productivity and nutrient-use efficiency.

19.
ACS Nano ; 17(16): 15821-15835, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37553292

ABSTRACT

In the current study, foliar spray with lanthanum (La) based nanomaterials (La10Si6O27 nanorods, La10Si6O27 nanoparticle, La(OH)3 nanorods, and La2O3 nanoparticle) suppressed the occurrence of sheath blight (Rhizoctonia solani) in rice. The beneficial effects were morphology-, composition-, and concentration-dependent. Foliar application of La10Si6O27 nanorods (100 mg/L) yielded the greatest disease suppression, significantly decreasing the disease severity by 62.4% compared with infected controls; this level of control was 2.7-fold greater than the commercially available pesticide (Thifluzamide). The order of efficacy was as follows: La10Si6O27 nanorods > La10Si6O27 nanoparticle > La(OH)3 nanorods > La2O3 nanoparticle. Mechanistically, (1) La10Si6O27 nanorods had greater bioavailability, slower dissolution, and simultaneous Si nutrient benefits; (2) transcriptomic and metabolomic analyses revealed that La10Si6O27 nanorods simultaneously strengthened rice systemic acquired resistance, physical barrier formation, and antioxidative systems. Additionally, La10Si6O27 nanorods improved rice yield by 35.4% and promoted the nutritional quality of the seeds as compared with the Thifluzamide treatment. A two-year La10Si6O27 nanorod exposure had no effect on soil health based on the evaluated chemical, physical, and biological soil properties. These findings demonstrate that La based nanomaterials can serve as an effective and sustainable strategy to safeguard crops and highlight the importance of nanomaterial composition and morphology in terms of optimizing benefit.


Subject(s)
Nanostructures , Oryza , Soil , Lanthanum/pharmacology , Oryza/chemistry , Silicates , Plant Diseases/prevention & control
20.
Sci Total Environ ; 901: 165973, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37532034

ABSTRACT

Carbon dots (CDs)-enabled agriculture has been developing rapidly, but small-scale synthesis and high costs hinder the agricultural application of CDs. Herein, biomass-derived carbon dots (B-CDs) were prepared on a gram-level with low cost, and these B-CDs significantly improved crop photosynthesis. The B-CDs, exhibiting small size and blue fluorescence, were absorbed by crops and enhanced photosynthesis via light-harvesting. Foliar application of B-CDs (10 mg·kg-1) could promote chlorophyll synthesis (30-100 %), Ferredoxin (Fd, 40-80 %), Rubisco enzyme (20-110 %) and upregulated gene expression (20-70 %), resulting in higher net photosynthetic rates (130-300 %), dry biomass (160-300 %) and fresh biomass (80-150 %). Further, the B-CDs could increase crop photosynthesis under nutrient deficient conditions, which was attributed to the release of nutrients from B-CDs. Therefore, the B-CDs enhanced the photosynthesis via enhancing light conversion and nutrient supply. This study provides a promising material capable of enhancing photosynthesis for sustainable agriculture production.

SELECTION OF CITATIONS
SEARCH DETAIL
...